Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
Mol Biol Cell ; 33(1): ar7, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731012

RESUMO

We demonstrate here that mitoribosomal protein synthesis, responsible for the synthesis of oxidative phosphorylation (OXPHOS) subunits encoded by the mitochondrial genome, occurs at high levels during glycolysis fermentation and in a manner uncoupled from OXPHOS complex assembly regulation. Furthermore, we provide evidence that the mitospecific domain of Mrp7 (bL27), a mitoribosomal component, is required to maintain mitochondrial protein synthesis during fermentation but is not required under respiration growth conditions. Maintaining mitotranslation under high-glucose-fermentation conditions also involves Mam33 (p32/gC1qR homologue), a binding partner of Mrp7's mitospecific domain, and together they confer a competitive advantage for a cell's ability to adapt to respiration-based metabolism when glucose becomes limiting. Furthermore, our findings support that the mitoribosome, and specifically the central protuberance region, may be differentially regulated and/or assembled, under the different metabolic conditions of fermentation and respiration. On the basis of our findings, we propose that the purpose of mitotranslation is not limited to the assembly of OXPHOS complexes, but also plays a role in mitochondrial signaling critical for switching cellular metabolism from a glycolysis- to a respiration-based state.


Assuntos
Respiração Celular/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentação/fisiologia , Glucose/metabolismo , Glicólise , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Ribossomos Mitocondriais/metabolismo , Fosforilação Oxidativa , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia
2.
Genes (Basel) ; 12(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946947

RESUMO

Chromatin is a highly dynamic biological entity that allows for both the control of gene expression and the stabilization of chromosomal domains. Given the high degree of plasticity observed in model and non-model organisms, it is not surprising that new chromatin components are frequently described. In this work, we tested the hypothesis that the remnants of the Doc5 transposable element, which retains a heterochromatin insertion pattern in the melanogaster species complex, can be bound by chromatin proteins, and thus be involved in the organization of heterochromatic domains. Using the Yeast One Hybrid approach, we found Rpl22 as a potential interacting protein of Doc5. We further tested in vitro the observed interaction through Electrophoretic Mobility Shift Assay, uncovering that the N-terminal portion of the protein is sufficient to interact with Doc5. However, in situ localization of the native protein failed to detect Rpl22 association with chromatin. The results obtained are discussed in the light of the current knowledge on the extra-ribosomal role of ribosomal protein in eukaryotes, which suggests a possible role of Rpl22 in the determination of the heterochromatin in Drosophila.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Heterocromatina/genética , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Animais , Cromatina/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Proteínas de Ligação a RNA/fisiologia , Proteínas Ribossômicas/fisiologia , Ribossomos/metabolismo
3.
Dev Cell ; 56(14): 2089-2102.e11, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34242585

RESUMO

In ribosomopathies, perturbed expression of ribosome components leads to tissue-specific phenotypes. What accounts for such tissue-selective manifestations as a result of mutations in the ribosome, a ubiquitous cellular machine, has remained a mystery. Combining mouse genetics and in vivo ribosome profiling, we observe limb-patterning phenotypes in ribosomal protein (RP) haploinsufficient embryos, and we uncover selective translational changes of transcripts that controlling limb development. Surprisingly, both loss of p53, which is activated by RP haploinsufficiency, and augmented protein synthesis rescue these phenotypes. These findings are explained by the finding that p53 functions as a master regulator of protein synthesis, at least in part, through transcriptional activation of 4E-BP1. 4E-BP1, a key translational regulator, in turn, facilitates selective changes in the translatome downstream of p53, and this thereby explains how RP haploinsufficiency may elicit specificity to gene expression. These results provide an integrative model to help understand how in vivo tissue-specific phenotypes emerge in ribosomopathies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Extremidades/embriologia , Haploinsuficiência , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Ribossômicas/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Padronização Corporal , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Fenótipo , Ribossomos/metabolismo
4.
Int J Mol Sci ; 22(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071057

RESUMO

Cytosolic ribosomes (cytoribosomes) are macromolecular ribonucleoprotein complexes that are assembled from ribosomal RNA and ribosomal proteins, which are essential for protein biosynthesis. Mitochondrial ribosomes (mitoribosomes) perform translation of the proteins essential for the oxidative phosphorylation system. The biogenesis of cytoribosomes and mitoribosomes includes ribosomal RNA processing, modification and binding to ribosomal proteins and is assisted by numerous biogenesis factors. This is a major energy-consuming process in the cell and, therefore, is highly coordinated and sensitive to several cellular stressors. In mitochondria, the regulation of mitoribosome biogenesis is essential for cellular respiration, a process linked to cell growth and proliferation. This review briefly overviews the key stages of cytosolic and mitochondrial ribosome biogenesis; summarizes the main steps of ribosome biogenesis alterations occurring during tumorigenesis, highlighting the changes in the expression level of cytosolic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs) in different types of tumors; focuses on the currently available information regarding the extra-ribosomal functions of CRPs and MRPs correlated to cancer; and discusses the role of CRPs and MRPs as biomarkers and/or molecular targets in cancer treatment.


Assuntos
Transformação Celular Neoplásica , Neoplasias/metabolismo , Biogênese de Organelas , Ribossomos , Animais , Apoptose , Autofagia , Ciclo Celular , Movimento Celular , Nucléolo Celular/metabolismo , Citosol/metabolismo , Reparo do DNA , Estresse do Retículo Endoplasmático , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Regulação Neoplásica da Expressão Gênica , Terapia Genética/métodos , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mitocondrial/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/fisiologia , Ribossomos/fisiologia
5.
Mol Cell ; 81(12): 2566-2582.e6, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33878294

RESUMO

The mitochondrial translation system originates from a bacterial ancestor but has substantially diverged in the course of evolution. Here, we use single-particle cryo-electron microscopy (cryo-EM) as a screening tool to identify mitochondrial translation termination mechanisms and to describe them in molecular detail. We show how mitochondrial release factor 1a releases the nascent chain from the ribosome when it encounters the canonical stop codons UAA and UAG. Furthermore, we define how the peptidyl-tRNA hydrolase ICT1 acts as a rescue factor on mitoribosomes that have stalled on truncated messages to recover them for protein synthesis. Finally, we present structural models detailing the process of mitochondrial ribosome recycling to explain how a dedicated elongation factor, mitochondrial EFG2 (mtEFG2), has specialized for cooperation with the mitochondrial ribosome recycling factor to dissociate the mitoribosomal subunits at the end of the translation process.


Assuntos
Mitocôndrias/fisiologia , Ribossomos Mitocondriais/metabolismo , Terminação Traducional da Cadeia Peptídica/fisiologia , Animais , Hidrolases de Éster Carboxílico , Códon de Terminação , Microscopia Crioeletrônica/métodos , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Terminação Traducional da Cadeia Peptídica/genética , Fator G para Elongação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/fisiologia , Ribossomos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-33549829

RESUMO

Hydrogen sulfide is a natural, widely distributed, poisonous substance and sulfide: quinone oxidoreductase (SQR) is responsible for oxidizing hydrogen sulfide to less toxic sulfur compounds. The increase of SQR mRNA level is an important mechanism for organisms to adapt to hydrogen sulfide-rich environments. However, its transcriptional regulation mechanism is not very clear. In this study, a mitochondrial 28S ribosomal protein S27 (MRPS27), which has never been reported as a transcription factor, was screened by yeast one-hybrid experiment from the echiuran worm Urechis unicinctus, a benthic organism living in marine sediments. Western blotting indicated that UuMRPS27 contents increased significantly in the nuclear extract of hindgut under exposed to 150 µM sulfide. ChIP and EMSA assays demonstrated that UuMRPS27 did bind to the sqr proximal promoter, the key binding sequence was CTAGAG (+12 to +17 of the promoter) detected by DNase I footprinting assay as well as transient transfection experiments. Furthermore, UuMRPS27, as a transcription activator, exhibited the highest transcription activity compared with other reported sqr transcription factors. Our data revealed for the first time the role of MRPS27 acting as a transcription factor which expanded the understanding of sqr transcriptional regulation in sulfide metabolism mechanism.


Assuntos
Proteínas Mitocondriais/fisiologia , Poliquetos/metabolismo , Quinona Redutases/metabolismo , Proteínas Ribossômicas/fisiologia , Sulfetos/metabolismo , Fatores de Transcrição/fisiologia , Animais , Regulação da Expressão Gênica , Poliquetos/genética , Quinona Redutases/genética , Ativação Transcricional
7.
Nucleic Acids Res ; 49(4): 2226-2239, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503254

RESUMO

Ribosome hibernation is a universal translation stress response found in bacteria as well as plant plastids. The term was coined almost two decades ago and despite recent insights including detailed cryo-EM structures, the physiological role and underlying molecular mechanism of ribosome hibernation has remained unclear. Here, we demonstrate that Escherichia coli hibernation factors RMF, HPF and RaiA (HFs) concurrently confer ribosome hibernation. In response to carbon starvation and resulting growth arrest, we observe that HFs protect ribosomes at the initial stage of starvation. Consistently, a deletion mutant lacking all three factors (ΔHF) is severely inhibited in regrowth from starvation. ΔHF cells increasingly accumulate 70S ribosomes harbouring fragmented rRNA, while rRNA in wild-type 100S dimers is intact. RNA fragmentation is observed to specifically occur at HF-associated sites in 16S rRNA of assembled 70S ribosomes. Surprisingly, degradation of the 16S rRNA 3'-end is decreased in cells lacking conserved endoribonuclease YbeY and exoribonuclease RNase R suggesting that HFs directly block these ribonucleases from accessing target sites in the ribosome.


Assuntos
Proteínas de Escherichia coli/fisiologia , Ribonucleases/metabolismo , Proteínas Ribossômicas/fisiologia , Ribossomos/metabolismo , Carbono/fisiologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Mutação , Biossíntese de Proteínas , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/genética , Estresse Fisiológico/genética
8.
Nucleic Acids Res ; 49(1): 206-220, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330942

RESUMO

Proteostasis needs to be tightly controlled to meet the cellular demand for correctly de novo folded proteins and to avoid protein aggregation. While a coupling between translation rate and co-translational folding, likely involving an interplay between the ribosome and its associated chaperones, clearly appears to exist, the underlying mechanisms and the contribution of ribosomal proteins remain to be explored. The ribosomal protein uL3 contains a long internal loop whose tip region is in close proximity to the ribosomal peptidyl transferase center. Intriguingly, the rpl3[W255C] allele, in which the residue making the closest contact to this catalytic site is mutated, affects diverse aspects of ribosome biogenesis and function. Here, we have uncovered, by performing a synthetic lethal screen with this allele, an unexpected link between translation and the folding of nascent proteins by the ribosome-associated Ssb-RAC chaperone system. Our results reveal that uL3 and Ssb-RAC cooperate to prevent 80S ribosomes from piling up within the 5' region of mRNAs early on during translation elongation. Together, our study provides compelling in vivo evidence for a functional connection between peptide bond formation at the peptidyl transferase center and chaperone-assisted de novo folding of nascent polypeptides at the solvent-side of the peptide exit tunnel.


Assuntos
Chaperonas Moleculares/fisiologia , Complexos Multiproteicos/fisiologia , Elongação Traducional da Cadeia Peptídica/fisiologia , Dobramento de Proteína , Proteostase/fisiologia , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Alelos , Mutação com Perda de Função , Chaperonas Moleculares/genética , Mutação de Sentido Incorreto , Peptidil Transferases/fisiologia , Mutação Puntual , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/fisiologia , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Cells ; 9(10)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076379

RESUMO

A number of different defects in the process of ribosome production can lead to a diversified spectrum of disorders that are collectively identified as ribosomopathies. The specific factors involved may either play a role only in ribosome biogenesis or have additional extra-ribosomal functions, making it difficult to ascribe the pathogenesis of the disease specifically to an altered ribosome biogenesis, even if the latter is clearly affected. We reviewed the available literature in the field from this point of view with the aim of distinguishing, among ribosomopathies, the ones due to specific alterations in the process of ribosome production from those characterized by a multifactorial pathogenesis.


Assuntos
RNA Ribossômico/fisiologia , Doenças Raras/etiologia , Proteínas Ribossômicas/fisiologia , Ribossomos/genética , Ribossomos/patologia , Anemia de Diamond-Blackfan , Anemia Macrocítica , Deleção Cromossômica , Cromossomos Humanos Par 5 , Disceratose Congênita , Retardo do Crescimento Fetal , Predisposição Genética para Doença , Cabelo/anormalidades , Doença de Hirschsprung , Humanos , Disostose Mandibulofacial , Osteocondrodisplasias/congênito , Doenças da Imunodeficiência Primária , Transtornos Psicomotores , Síndrome de Shwachman-Diamond
10.
Mol Cell ; 80(3): 470-484.e8, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33053322

RESUMO

Cellular responses to environmental stress are frequently mediated by RNA-binding proteins (RBPs). Here, we examined global RBP dynamics in Saccharomyces cerevisiae in response to glucose starvation and heat shock. Each stress induced rapid remodeling of the RNA-protein interactome without corresponding changes in RBP abundance. Consistent with general translation shutdown, ribosomal proteins contacting the mRNA showed decreased RNA association. Among translation components, RNA association was most reduced for initiation factors involved in 40S scanning (eukaryotic initiation factor 4A [eIF4A], eIF4B, and Ded1), indicating a common mechanism of translational repression. In unstressed cells, eIF4A, eIF4B, and Ded1 primarily targeted the 5' ends of mRNAs. Following glucose withdrawal, 5' binding was abolished within 30 s, explaining the rapid translation shutdown, but mRNAs remained stable. Heat shock induced progressive loss of 5' RNA binding by initiation factors over ∼16 min and provoked mRNA degradation, particularly for translation-related factors, mediated by Xrn1. Taken together, these results reveal mechanisms underlying translational control of gene expression during stress.


Assuntos
Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas/fisiologia , Estresse Fisiológico/fisiologia , Regiões 5' não Traduzidas , RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4G em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Glucose/metabolismo , Resposta ao Choque Térmico/fisiologia , Fatores de Iniciação de Peptídeos/fisiologia , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
BMC Plant Biol ; 20(1): 463, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032526

RESUMO

BACKGROUND: In plants, each ribosomal protein (RP) is encoded by a small gene family but it is largely unknown whether the family members are functionally diversified. There are two RPL23a paralogous genes (RPL23aA and RPL23aB) encoding cytoplasmic ribosomal proteins in Arabidopsis thaliana. Knock-down of RPL23aA using RNAi impeded growth and led to morphological abnormalities, whereas knock-out of RPL23aB had no observable phenotype, thus these two RPL23a paralogous proteins have been used as examples of ribosomal protein paralogues with functional divergence in many published papers. RESULTS: In this study, we characterized T-DNA insertion mutants of RPL23aA and RPL23aB. A rare non-allelic non-complementation phenomenon was found in the F1 progeny of the rpl23aa X rpl23ab cross, which revealed a dosage effect of these two genes. Both RPL23aA and RPL23aB were found to be expressed almost in all examined tissues as revealed by GUS reporter analysis. Expression of RPL23aB driven by the RPL23aA promoter can rescue the phenotype of rpl23aa, indicating these two proteins are actually equivalent in function. Interestingly, based on the publicly available RNA-seq data, we found that these two RPL23a paralogues were expressed in a concerted manner and the expression level of RPL23aA was much higher than that of RPL23aB at different developmental stages and in different tissues. CONCLUSIONS: Our findings suggest that the two RPL23a paralogous proteins are functionally equivalent but the two genes are not. RPL23aA plays a predominant role due to its higher expression levels. RPL23aB plays a lesser role due to its lower expression. The presence of paralogous genes for the RPL23a protein in plants might be necessary to maintain its adequate dosage.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Proteínas Ribossômicas/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , DNA Bacteriano , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Regiões Promotoras Genéticas , Proteínas Ribossômicas/fisiologia
12.
Biochimie ; 177: 87-97, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828823

RESUMO

Emerging observations suggest that ribosomal proteins (RPs) play important extra-ribosomal roles in maintenance of cellular homeostasis. However, the mechanistic insights into these processes have not been extensively explored, especially in pathogenic bacteria. Here, we present our findings on potential extra-ribosomal functions of Mycobacterium tuberculosis (Mtb) RPs. We observed that Mtb RpsB and RpsQ are differentially localized to cell wall fraction in M. tuberculosis (H37Rv), while their M. smegmatis (Msm) homologs are primarily cytosolic. Cellular fractionation of ectopically expressed Mtb RPs in surrogate host (M. smegmatis) also shows their association with cell membrane/cell wall without any gross changes in cell morphology. M. smegmatis expressing Mtb RpsB exhibited altered redox homeostasis, decreased drug-induced ROS, reduced cell wall permeability and increased tolerance to various proteotoxic stress (oxidative stress, SDS and starvation). Mtb RpsB expression was also associated with increased resistance specifically towards Isoniazid, Ethionamide and Streptomycin. The enhanced drug tolerance was specific to Mtb RpsB and not observed upon ectopic expression of M. smegmatis homolog (Msm RpsB). Interestingly, C-terminus deletion in Mtb RpsB affected its localization and reversed the stress-resilient phenotypes. We also observed that M. tuberculosis (H37Rv) with upregulated RpsB levels had higher intracellular survival in macrophage. All these observations hint towards existence of moonlighting roles of Mtb RpsB in imparting stress resilience to mycobacteria. This work open avenues for further exploration of alternative pathways associated with fitness and drug tolerance in mycobacteria.


Assuntos
Proteínas de Bactérias/fisiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Ribossômicas/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Membrana Celular/metabolismo , Parede Celular/metabolismo , Citosol/metabolismo , Tolerância a Medicamentos/genética , Humanos , Lipídeos/análise , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas Mutantes/química , Proteínas Mutantes/fisiologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Oxirredução , Estresse Oxidativo/genética , Permeabilidade , Espécies Reativas de Oxigênio/metabolismo , Proteínas Ribossômicas/química , Ribossomos/química , Células THP-1
13.
Mol Biol Rep ; 47(8): 6083-6090, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32748020

RESUMO

Ribosomal protein S3 (RPS3) is a component of the 40S ribosomal subunit. It is known to function in ribosome biogenesis and as an endonuclease. RPS3 has been shown to be over expressed in colon adenocarcinoma but its role in colon cancer is still unknown. In this study, we aim at determining the expression levels of RPS3 in a colon cancer cell line Caco-2 compared to a normal colon mucosa cell line NCM-460 and study the effects of targeting this protein by siRNA on cellular behavior. RPS3 was found to be expressed in both cell lines. However, siRNA treatment showed a more protruding effect on Caco-2 cells compared to NCM-460 cells. RPS3 knockdown led to a significant decrease in the proliferation, survival, migration and invasion and an increase in the apoptosis of Caco-2 cells. Western blot analysis demonstrated that these effects correlated with an increase in the level of the tumor suppressor p53 and a decrease in the level and activity of lactate dehydrogenase (LDH), an enzyme involved in the metabolism of cancer cells. No significant effect was shown in normal colon NCM-460 cells. Targeting p53 by siRNA did not affect RPS3 levels indicating that p53 may be a downstream target of RPS3. However, the concurrent knockdown of RPS3 and p53 showed no change in LDH level in Caco-2 cells suggesting an interesting interplay among the three proteins. These findings might present RPS3 as a selective molecular marker in colon cancer and an attractive target for colon cancer therapy.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias do Colo/metabolismo , L-Lactato Desidrogenase/biossíntese , Proteínas de Neoplasias/fisiologia , Proteínas Ribossômicas/fisiologia , Proteína Supressora de Tumor p53/biossíntese , Adenocarcinoma/genética , Apoptose , Linhagem Celular Tumoral , Colo/metabolismo , Neoplasias do Colo/genética , Técnicas de Silenciamento de Genes , Humanos , Mucosa Intestinal/metabolismo , L-Lactato Desidrogenase/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas Ribossômicas/antagonistas & inibidores , Proteínas Ribossômicas/genética , Proteína Supressora de Tumor p53/genética
14.
Blood ; 136(11): 1262-1273, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32702755

RESUMO

Diamond-Blackfan anemia (DBA) was the first ribosomopathy described and is a constitutional inherited bone marrow failure syndrome. Erythroblastopenia is the major characteristic of the disease, which is a model for ribosomal diseases, related to a heterozygous allelic variation in 1 of the 20 ribosomal protein genes of either the small or large ribosomal subunit. The salient feature of classical DBA is a defect in ribosomal RNA maturation that generates nucleolar stress, leading to stabilization of p53 and activation of its targets, resulting in cell-cycle arrest and apoptosis. Although activation of p53 may not explain all aspects of DBA erythroid tropism, involvement of GATA1/HSP70 and globin/heme imbalance, with an excess of the toxic free heme leading to reactive oxygen species production, account for defective erythropoiesis in DBA. Despite significant progress in defining the molecular basis of DBA and increased understanding of the mechanistic basis for DBA pathophysiology, progress in developing new therapeutic options has been limited. However, recent advances in gene therapy, better outcomes with stem cell transplantation, and discoveries of putative new drugs through systematic drug screening using large chemical libraries provide hope for improvement.


Assuntos
Anemia de Diamond-Blackfan , Anormalidades Múltiplas/genética , Adenosina Desaminase/sangue , Adenosina Desaminase/genética , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/terapia , Pré-Escolar , Anormalidades Congênitas/genética , Diagnóstico Diferencial , Gerenciamento Clínico , Resistência a Medicamentos , Eritrócitos/enzimologia , Retardo do Crescimento Fetal/etiologia , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/fisiologia , Heterogeneidade Genética , Terapia Genética , Glucocorticoides/uso terapêutico , Proteínas de Choque Térmico HSP70/metabolismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/genética , Modelos Biológicos , Mutação , Síndromes Neoplásicas Hereditárias/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/fisiologia , Proteína Supressora de Tumor p53/fisiologia
15.
Biomed Pharmacother ; 127: 110219, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32559850

RESUMO

BACKGROUND: Increasing studies have revealed that circular RNAs (circRNAs) contribute to gastric cancer (GC) progression. The circular RNA ribosomal protein L15 (circ-RPL15) is involved in chronic lymphocytic leukemia. However, its expression and functions in GC remain elusive. METHODS: The expression of circ-RPL15 in human GC tissues and adjacent normal tissues, human gastric cancer cell lines (MGC-803, BGC-823, MGN-28, SGC-7901, AGS) and normal gastric mucosal epithelial cell line (GES-1) were detected by RT-PCR. The relationship between circ-RPL15 level and clinical-pathological indicators were also analyzed. Gain- of function experiments of circ-RPL15 and miR-502-3p were conducted to verify their roles in mediating GC cell proliferation, apoptosis and metastasis. Also, the downstream mechanisms of circ-RPL15 were predicted by bioinformatics analysis, and the interactions between circ-RPL15 and miR-502-3p, miR-502-3p and OLFM4 were verified by dual luciferase reporter gene assay and RNA FISH. RESULTS: circ-RPL15 was upregulated in GC tissues and cell lines, and the overexpressed circ-RPL15 was correlated with poorer survival of GC patients. Functionally, circ-RPL15 upregulation distinctly promoted the proliferation, migration and invasion of GC cells and inhibited apoptosis. Mechanistically, circ-RPL15 functioned as a competitive endogenous RNA via sponging miR-502-3p and activated OLFM4/STAT3 pathway. CONCLUSION: circ-RPL15 promotes GC progression and predicts poor prognosis of GC patients, and regulates the malignant phenotypes of GC cells by mediating the miR-502-3p/OLFM4/STAT3 axis.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , MicroRNAs/metabolismo , Proteínas Ribossômicas/fisiologia , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/fisiopatologia , Apoptose/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Ribossômicas/biossíntese , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Análise de Sobrevida , Regulação para Cima
16.
Elife ; 92020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32432546

RESUMO

A long-standing problem is how cells that lack one of the highly similar ribosomal proteins (RPs) often display distinct phenotypes. Yeast and other organisms live longer when they lack specific ribosomal proteins, especially of the large 60S subunit of the ribosome. However, longevity is neither associated with the generation time of RP deletion mutants nor with bulk inhibition of protein synthesis. Here, we queried actively dividing RP mutants through the cell cycle. Our data link transcriptional, translational, and metabolic changes to phenotypes associated with the loss of paralogous RPs. We uncovered translational control of transcripts encoding enzymes of methionine and serine metabolism, which are part of one-carbon (1C) pathways. Cells lacking Rpl22Ap, which are long-lived, have lower levels of metabolites associated with 1C metabolism. Loss of 1C enzymes increased the longevity of wild type cells. 1C pathways exist in all organisms and targeting the relevant enzymes could represent longevity interventions.


Assuntos
Carbono/metabolismo , Divisão Celular/fisiologia , Senescência Celular/fisiologia , Regulação da Expressão Gênica , Biossíntese de Proteínas , Proteínas de Ligação a RNA/fisiologia , Proteínas Ribossômicas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Ciclo Celular/genética , Divisão Celular/genética , Senescência Celular/genética , Biblioteca Gênica , Mutação com Perda de Função , Metionina/metabolismo , Fenótipo , RNA Fúngico , Proteínas de Ligação a RNA/genética , RNA-Seq , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo
17.
FEBS J ; 287(17): 3794-3813, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32383535

RESUMO

Monocyte infiltration to the site of pathogenic invasion is critical for inflammatory response and host defence. However, this process demands precise regulation as uncontrolled migration of monocytes to the site delays resolution of inflammation and ultimately promotes chronic inflammation. C-C motif chemokine ligand 2 (CCL2) plays a key role in monocyte migration, and hence, its expression should be tightly regulated. Here, we report a post-transcriptional regulation of CCL2 involving the large ribosomal subunit protein L22 (RPL22) in LPS-activated, differentiated THP-1 cells. Early events following LPS treatment include transcriptional upregulation of RPL22 and its nuclear accumulation. The protein binds to the first 20 nt sequence of the 5'UTR of ccl2 mRNA. Simultaneous nuclear translocation of up-frameshift-1 protein and its interaction with RPL22 results in cytoplasmic degradation of the ccl2 mRNA at a later stage. Removal of RPL22 from cells results in increased expression of CCL2 in response to LPS causing disproportionate migration of monocytes. We propose that post-transcriptional regulation of CCL2 by RPL22 fine-tunes monocyte infiltration during a pathogenic insult and maintains homeostasis of the immune response critical to resolution of inflammation. DATABASES: Microarray data are available in NCBI GEO database (Accession No GSE126525).


Assuntos
Quimiocina CCL2/biossíntese , Inflamação/genética , Lipopolissacarídeos/toxicidade , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/fisiologia , Proteínas Ribossômicas/fisiologia , Regiões 5' não Traduzidas , Transporte Ativo do Núcleo Celular , Sequência de Bases , Sistemas CRISPR-Cas , Movimento Celular , Quimiocina CCL2/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Células MCF-7 , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Conformação Proteica , Mapeamento de Interação de Proteínas , RNA Helicases/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/deficiência , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Células THP-1 , Transativadores/metabolismo
18.
Mol Microbiol ; 114(3): 391-408, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32291821

RESUMO

Many bacterial small RNAs (sRNAs) efficiently inhibit translation of target mRNAs by forming a duplex that sequesters the Shine-Dalgarno (SD) sequence or start codon and prevents formation of the translation initiation complex. There are a growing number of examples of sRNA-mRNA binding interactions distant from the SD region, but how these mediate translational regulation remains unclear. Our previous work in Escherichia coli and Salmonella identified a mechanism of translational repression of manY mRNA by the sRNA SgrS through a binding interaction upstream of the manY SD. Here, we report that SgrS forms a duplex with a uridine-rich translation-enhancing element in the manY 5' untranslated region. Notably, we show that the enhancer is ribosome-dependent and that the small ribosomal subunit protein S1 interacts with the enhancer to promote translation of manY. In collaboration with the chaperone protein Hfq, SgrS interferes with the interaction between the translation enhancer and ribosomal protein S1 to repress translation of manY mRNA. Since bacterial translation is often modulated by enhancer-like elements upstream of the SD, sRNA-mediated enhancer silencing could be a common mode of gene regulation.


Assuntos
Elementos Facilitadores Genéticos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Iniciação Traducional da Cadeia Peptídica , Pequeno RNA não Traduzido/genética , Proteínas Ribossômicas/fisiologia , Regiões 5' não Traduzidas/genética , Pareamento de Bases , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , Interferência de RNA , RNA Bacteriano/genética , Ribossomos/fisiologia
19.
Nucleic Acids Res ; 48(3): 1068-1083, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31777928

RESUMO

Engineering the process of molecular translation, or protein biosynthesis, has emerged as a major opportunity in synthetic and chemical biology to generate novel biological insights and enable new applications (e.g. designer protein therapeutics). Here, we review methods for engineering the process of translation in vitro. We discuss the advantages and drawbacks of the two major strategies-purified and extract-based systems-and how they may be used to manipulate and study translation. Techniques to engineer each component of the translation machinery are covered in turn, including transfer RNAs, translation factors, and the ribosome. Finally, future directions and enabling technological advances for the field are discussed.


Assuntos
Bioengenharia , Biossíntese de Proteínas , Aminoácidos/metabolismo , RNA de Transferência/biossíntese , RNA de Transferência/metabolismo , Proteínas Ribossômicas/fisiologia , Ribossomos/química , Ribossomos/metabolismo
20.
Cells ; 8(11)2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653044

RESUMO

Many facets of ribosome biogenesis and function, including ribosomal RNA (rRNA) transcription, 70S assembly and protein translation, are negatively impacted upon induction of a nutrient stress-sensing signalling pathway termed the stringent response. This stress response is mediated by the alarmones guanosine tetra- and penta-phosphate ((p)ppGpp), the accumulation of which leads to a massive cellular response that slows growth and aids survival. The 70S bacterial ribosome is an intricate structure, with assembly both complex and highly modular. Presiding over the assembly process is a group of P-loop GTPases within the TRAFAC (Translation Factor Association) superclass that are crucial for correct positioning of both early and late stage ribosomal proteins (r-proteins) onto the rRNA. Often described as 'molecular switches', members of this GTPase superfamily readily bind and hydrolyse GTP to GDP in a cyclic manner that alters the propensity of the GTPase to carry out a function. TRAFAC GTPases are considered to act as checkpoints to ribosome assembly, involved in binding to immature sections in the GTP-bound state, preventing further r-protein association until maturation is complete. Here we review our current understanding of the impact of the stringent response and (p)ppGpp production on ribosome maturation in prokaryotic cells, focusing on the inhibition of (p)ppGpp on GTPase-mediated subunit assembly, but also touching upon the inhibition of rRNA transcription and protein translation.


Assuntos
Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , GTP Fosfo-Hidrolases/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Células Procarióticas/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Pirofosfatases/metabolismo , Proteínas Ribossômicas/fisiologia , Ribossomos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...